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Abstract

A computational procedure for the analysis and design of commercial vehicles structures is the
main objective of this work. Random fatigue analysis due to the effect of rough pavement surfaces
is carried out in the time domain based on Wöhler’s curves (stress levels vs. number of cycles), the
Palmgreen–Miner’s rule to compute the cumulative damage and the rainflow method for cycles counting.
First-order reliability method (FORM) and Monte Carlo simulation with importance and adaptive
sampling (MCSIAS) are used to evaluate the reliability index, which may be employed as a constraint in the
weight optimization process. The structural weight optimization is performed using Farkas’ method with
discrete variables.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

A computational algorithm for the fatigue analysis and design of commercial vehicles structures
using a simplified model with spatial frame bars is the main goal of this work. The aim of the
computational procedure presented here is to obtain more realistic design criteria than those
usually employed by industrial design practice.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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This model involves several topics, such as the following:
(a)
 Static analysis due to the structural weight and the effects of baggages and passengers.

(b)
 Dynamic analysis in the time domain of a vehicle travelling on rough pavements surfaces. As

these surfaces are random fields, they must be characterized by statistical quantities, such as
the mean value, the variance and the power spectral density function. Then, the corresponding
dynamic problem is a random process with support excitation. In this work, the pavement
surface is considered as a two-dimensional Gaussian, isotropic and homogeneous random
field. Although spectral density functions for different states of pavements surfaces were
presented by several authors, such as Dodds and Robson [1] and Ashmore and Hodges [2],
here the first one was adopted. The dynamic equilibrium equation of the system, expressed in
matrix form, is based on the approach presented in Ref. [3] with some modifications, and the
numerical solution is obtained using Newmark’s implicit method [4], and samples of the
prescribed displacement at the contact points between the vehicle and the road in the time
domain may be obtained with the pavement surface spectral density function and a harmonic
series, as indicated by Wirsching [5].
(c)
 A procedure to evaluate the vehicle lifetime. The vehicle is subjected to random multiaxial
fatigue. Although several sophisticated models for fatigue analysis exist, the Palmgreen–Miner
rule to determine the vehicle lifetime due to fatigue was adopted. This model, as well as several
other methods for fatigue analysis are described in Ref. [6].
(d)
 Reliability analysis to evaluate the system failure probability. Considering uncertainties with
respect to several parameters such as the variability of material properties values, dimensions
of structural members and the process involving material fatigue, a failure probability (or
reliability index) may be determined in order to guarantee a specified safety level to the
structural system. In this work, classical techniques, such as the first-order reliability method
(FORM), described, for example, by Haldar and Mahadevan [7] and Monte Carlo simulation
with importance and adaptive sampling (MCSIAS), were used [8–13].
(e)
 Application of an optimization technique to minimize the structural weight subject to
constraints based on yield stress, members stability and lifetime associated with failure
probability. In this work, the Farkas’ method [14], using discrete variables, was adopted.
Finally, the computational code was applied to a simplified model representing a bus, with
structural dimensions and loads similar to those used in this type of vehicles.
2. Formulation of the structural dynamic problem

2.1. The dynamic equilibrium equation

The rough pavement surfaces induce random loads on the structure, generating varying stress
components in the time domain that may lead to a fatigue failure process. This criterion defines
the vehicle lifetime. However, as a preliminary design, static analysis must also be carried out,
taking into account loads due to the structural weight and the effects of passengers and baggage.
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The dynamic equilibrium equation of the vehicle is given by

Mcc Mcb

Mbc Mbb

" #
�

€uc

€ub

" #
þ

Ccc Ccb

Cbc Cbb

" #
�

_uc

_ub

" #
þ

Kcc Kcb

Kbc Kbb

" #
�

uc

ub

" #
¼

0

0

� �
, (1)

where Mcc, Ccc and Kcc are, respectively, the mass, damping and stiffness matrices of the chassis
and the body. Mbb, Cbb and Kbb are the mass, damping and stiffness matrices of the suspension.
Terms coupling effects of chassis, body and suspension are indicated in Eq. (1) with the index cb
or bc. The absolute displacement components are contained in vector uc, which corresponds to the
unrestrained degrees of freedom of the chassis and the body. Prescribed displacement components
in points where the vehicle contacts the road surface are contained in ub.
From Eq. (1), the following equations may be written:

Mcc €uc þ Ccc _uc þ Kccuc ¼ �Mcb €ub � Ccb _ub � Kcbub (2)

and

Mbc €uc þ Cbc _uc þ Kbcuc ¼ �Mbb €ub � Cbb _ub � Kbbub. (3)

Multiplying Eq. (3) by �McbM
�1
bb ; and adding each term of this expression to Eq. (2), the

following equation is obtained:
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Assuming that the mass matrices of the suspension elements are diagonal matrices,Mcb ¼ 0 and
Mbc ¼ 0. Then, Eq. (4) may be written as follows:

Mcc €uc þ Ccc _uc þ Kccuc ¼ �Ccb _ub � Kcbub. (5)

Expressions given by Eq. (4) or by Eq. (5) may be solved using Newmark’s method [4].

2.2. Description of the rough pavement surfaces and determination of the prescribed displacement

samples

Pavement surfaces are represented by a random two-dimensional isotropic Gaussian field in
this work. The model of the spectral density function, proposed by Dodds and Robson [1], was
adopted and it is given by:

GðnÞ ¼ cn�w, (6)

where n is the wavenumber, w is a constant value (usually w ¼ 2:5) and c depends on the state of
the road surface. Values of c were presented by Dodds and Robson [1] and they vary from
2� 10�8 to 3� 10�5. The wavenumber n is related to the angular frequency o and the vehicle
velocity V by the expression o ¼ 2pnV . Eq. (6) is valid for values of frequencies ranging from 0.5
to 50Hz, and velocities varying from 5 to 50m/s. These frequency and velocity intervals
correspond to values of wavenumbers varying between 0.1 and 10 cycles/m.
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Once the spectral density function G(n) (or GðoÞ), which is a function of the vehicle velocity, is
known, the displacements are obtained with the following expression:

umi tð Þ ¼
XM
k¼1

2G okð ÞDok½ �
1=2 cos oktþ fk

� �
, (7)

where m and i indicate the input number and the sample number, M is the number of harmonic
components, Dok is the length of a specific angular frequency interval, fk is the phase angle and
ðGokÞ gives the value of the spectral density function for a specific value okX0 of the angular
frequency. As suggested by Wirsching [5], the phase angle fk was considered as a random
variable, with uniform distribution in the interval (0, 2p). In order to avoid sampling periodicity,
the frequency interval Dok was also considered as a random variable. Although representation of
the pavement surface as an isotropic model could be considered as a simplified model, it is very
difficult to get available data to use more complex representations, including correlation
coefficients and singularities, such as holes located in specific regions of the road.
3. Multiaxial random fatigue

3.1. State of stress

Stress components are calculated using classical strength of materials theory. They are
computed in each step, during the solution process of the dynamic problem, at some points of the
cross section. Different types of cross sections used in this work, as well as points where stresses
are calculated, can be observed in Fig. 1, where end forces are also shown.
In each point at the cross section, histories of the normal stress sxx and the shear stress txy are

obtained. These two histories do not present any direct correspondence in terms of peaks and
valleys. This aspect is very important to define a criterion for cycles counting and their combined
effects. It may be observed that the dynamic problem is a random process and concepts such as
periodicity and synchronism cannot be applied. Maximum and minimum values of normal and
shear stresses are obtained in each point using the cycles counting process. In this work the
rainflow method [6] was used.

3.2. Cumulative damage and lifetime estimate

In this work, a high cycle fatigue problem is considered. Therefore, the lifetime is estimated by
the stress-life approach, while the cumulative damage is calculated using the Palmgreen–Miner
rule.
When data for a specific material are not available, ‘‘stress level vs. number of cycles’’ curves

may be approximated. In this work, the high cycle fatigue regime is initiated at 1� 103 cycles and
the corresponding stress s103 may be obtained with the Manson expression [15] s103 ¼ 0:9sr

� �
;

where sr is the ultimate stress.
In commercial vehicle body structures, where steel with low grade of carbon is usually

employed, the yield stress is approximately equal to 250MPa and the fatigue limit, for 106 cycles,
may be approximate by sftb ¼ 0:5sr, where sftb is the fatigue limit of a standard test body. For
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Fig. 1. (a) Points of different cross sections where stress components are verified; (b) end forces acting on each element

of the space frame.
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structural members, this value must be corrected, using the following expression:

sf ¼ KaKbKweld0:5sr, (8)

where Ka is the surface factor, Kb is the size factor and Kweld is the weld factor. These coefficients
were used by several authors such as Norton [15], Juvinall [16] and Shigley [17]. Values adopted
for these three coefficients will be presented in the numerical application.
Fatigue curves may be expressed by the following analytical equation:

Nsm ¼ K ¼ 10a for 103pNp106, (9)

where coefficients m and a may be obtained by experimental tests. This standard curve is valid in
the interval between 103 and 106 cycles. A cut-off limit given by

log sf ¼ constant for N4106 cycles (10)

is adopted. Below this stress level, there is no structural damage due to material fatigue.
Eqs. (9) and (10) are represented by curve A in Fig. 2.
When loads have variable amplitude in welded metal structures, a stress level less than

the fatigue limit may produce crack propagation causing damage. To take into account this
problem, the EUROCODE 3 [18] extends the interval of Eq. (9) until N ¼ 5� 106 cycles, and
then a new segment, valid in the interval between 5� 106 and 108 cycles, is adopted, whose
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equation is given by:

Nsmþ2 ¼ K ¼ 10a for 5� 106pNp108. (11)

The last part of the curve, adopted by the EUROCODE 3 for N4108 cycles, is

log sf ¼ constant for N4108. (12)

Eqs. (9), (11) and (12) are represented by curve B in Fig. 2. Finally, another procedure may
be used, extending the curve given by Eq. (9) until the horizontal axis, as indicated by curve C
in Fig. 2.
The classical Palmgreen–Miner rule was adopted to calculate the cumulative damage, which is

given by

DX
Xk

i¼1

ni

Ni

¼ D, (13)

where k is the number of the different stress levels, ni is the number of cycles for the stress level i,
Ni is the fatigue lifetime for the stress level i, D is the cumulative damage and D is the limit value of
the cumulative damage. When fatigue failure occurs, D assumes values varying between 0.3 and
log�108
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Fig. 2. Curves ‘‘stress level vs. number of cycles’’: (A) standard curve; (B) curve given by EUROCODE 3; (C) Eq. (11)

extended until the horizontal axis.
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Fig. 3. Evaluation of the damage components for different stress levels.
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3.0, depending on several factors with random characteristics [15]. Components of the sum
indicated in Eq. (13) may be observed in Fig. 3.
Effects of the mean value of the alternating stresses must be taken into account. In this work the

expression given by Goodman [6] is used to obtain an equivalent stress (with a complete reverse
cycle), considering the influence of the mean value, and may be written as

sequiv ¼
sa

1� sm=sr

� � , (14)

where sequiv is the equivalent stress, sa is the alternating stress, sm is the mean value of the
alternating stress and sr is the ultimate stress.
Taking into account Eqs. (9) and (13), the Palmgreen–Miner rule may be expressed in the

following form:

D ¼
1

2

Xnc

i¼1

smð Þi

K
, (15)

where D is the damage and nc is the number of half cycles determined by the rainflow method.
3.3. Criteria for a multiaxial state stress

For a multiaxial state of stress, cycles counting requires special considerations, depending on
the method or the code that will be used. In some cases, cycles counting is carried out taking into
account the history of each stress component separately. In other cases, cycle counting is
performed combining histories of the different stress components.
Three procedures may be adopted: (a) Shigley’s method [17], (b) EUROCODE 3 [18] and (c)

Sines’ method.
In Shigley’s method equivalent stress components, alternating stress components and mean

value of the alternating stress components, used in Eq. (14), are computed using the equivalent
von Mises criterion. It is necessary to point out that positive and negative values of normal and
shear stress components in the records may be lost due to stress combination. In this work, it was
considered that the von Mises equivalent stress has the same sign as the predominant stress
component. After filtering and counting, each cycle is transformed in a completely reversed cycle
and the corresponding damage is calculated.
The EUROCODE 3 suggests, for the case of variable stress, that the cumulative damage may be

computed separately for the normal and the shear stresses. Then, the total cumulative damage is
calculated by the sum of the cumulative damage determined for each stress component separately.
Sines’ method is similar to Shigley’s method, but it does not consider the influence of the mean

value of the alternating shear stress, and then the equivalent mean value of the alternating stress is
given only by the effects of the normal stress.
In the computer code, the procedures suggested by Shigley and by EUROCODE 3 were

included, but the effect of the mean value of the alternating shear stress as indicated by Sines [19]
may be neglected.
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3.4. Computational procedure for the dynamic and fatigue analysis

The computational procedure to evaluate the structural lifetime due to material fatigue is
summarized in the following steps:
(1)
 input data corresponding to the structure and the pavement. Data to perform simulations in
the time domain must be also given;
(2)
 assembling, application of the boundary conditions and decomposition of the coefficient
matrix, which is a function of the mass, damping and stiffness matrices, are carried out;
(3)
 initiate a loop for i ¼ 1 until the number of different conditions in which the vehicle will
work, characterized by the vehicle velocity levels and respective pavement roughness during
the lifetime;
(4)
 generate the effects of the pavement roughness samples through the phase angle. Initiate a
loop for j ¼ 1 until the number of samples;
(5)
 initiate a loop for k ¼ 1 until the number of time intervals;

(6)
 assembling, application of the boundary conditions to the load vector and back substitution

to obtain displacement components are performed;

(7)
 calculate efforts and stress components of structural members;

(8)
 end of the loop for k;

(9)
 fatigue analysis: for a uniaxial state of stress, normal stresses are used; for a biaxial state of

stress, Shigley’s method [17] (using the von Mises equivalent stress) or the EUROCODE 3
[18] with the suggestion given by Sines (neglecting effects of the mean value of the shear
stress) may be used; store stress obtained for each sample of the pavement surface.
(10)
 end of the loop for j;

(11)
 calculate the structure lifetime;

(12)
 end of the loop for i.
4. Structural reliability analysis

4.1. The failure probability

Evaluation of the failure probability and safety levels of structural systems is of extreme
importance in structural design, mainly when variables are eminently random. Random variables,
such as material properties, loads and member dimensions, are physical uncertainties and it is
necessary to quantify and compare the importance of each one of these variables in the structural
safety.
As it is very difficult to take into account all kinds of uncertainties (including those due to

human factors, phenomenological aspects or due to the adopted model), the failure probability
(or its complement, the reliability index) may be thought of as a ‘‘formal’’ quantity which has
some meaning when it is a result of comparisons with reliability evaluations of structural systems,
where the same uncertainties have been adopted. In this way, structural reliability arises as an
important tool to compare existing structural design procedures and to validate design rules
established in the corresponding practice codes.
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For structural reliability analysis, the structural characteristics may be defined by a vector of
basic random variables X. In order to compute the failure probability it is necessary to formulate
a limit state function g(X) such that g(X)40 when safety conditions are satisfied and the
corresponding point in the space generated by the components of the vector X is located in the
safety region. On the other hand, if g(X)p0, then the design requirements are not satisfied and
the corresponding point is located in the failure region of the variable space. The failure
probability Pf is given by

Pf ¼

Z
X=g Xð Þp0½ �

f x Xð ÞdX, (16)

where fx(X) is the joint probability density function of the random variables. Evaluation of Eq.
(16) is very difficult because sometimes fx(X) is not known and for completely general limit state
functions in large dimension spaces it demands a tremendous task. There are several classical
techniques to evaluate Pf or its complement, the reliability index b. FORM and MCSAIS were
used in this work.

4.2. FORM

FORM is an optimization problem, which may be stated as follows:

Minimize b ¼ Zk k; subject to G ðZÞ ¼ 0, (17)

where b is the reliability index, Z is the vector of variables in the non-correlated standard
Gaussian space, G(Z) is the limit state function, transformed to the non-correlated Gaussian space
and the symbol �k k indicates the Euclidian norm. The corresponding result is the smallest distance
b from the origin of the reference system in the variable space to the limit state function. The point
of intersection between the vector Z of magnitude b and the surface GðZÞ ¼ 0 is the design point,
and the corresponding coordinate is contained in vector Z*.
Variables in the non-correlated standard Gaussian space are related to variables in the real

space (which may be a non-Gaussian space), with coordinates contained in vector X and a limit
state function g(X), by the probabilistic transformation

Z ¼ S Xð Þ ¼ L�1f�1FX Xð Þ or X ¼ T Zð Þ ¼ S�1 Zð Þ, (18)

where L�1 is the inverse of the lower triangular matrix resulting from the Choleski decomposition
of q0, which is the matrix of the correlation coefficients in the standard Gaussian space; F�1 the
inverse of the standard Gaussian cumulative probability function; FX the Cumulative probability
function in the real space. If X is a correlated standard Gaussian space FX ¼ F.
Terms of matrix q0 may be obtained from the matrix of correlation coefficients in the real space

q using Nataf’s model [20], which is given by

rij ¼

Z 1
�1

Z 1
�1

xi � mi

ci

� �
xj � mj

cj

 !
j z1; z2;r0ij
� �

dzi dzj, (19)

where mi, mj, ci, and cj are the mean values and standard deviations of variables zi and zj,
respectively, and j z1; z2; r0ij

� �
is the two-dimensional standard Gaussian probability density

function (with mean values equal to zero and standard deviations equal to one).
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Elements of matrix q may be calculated using exponential, square exponential or sinusoidal
correlation. After elements rij in the real space have been calculated, terms r0ij in the standard
Gaussian space can be calculated by numerical integration of Eq. (19) or by empirical expressions
(see Ref. [20]). If X is in the correlated standard Gaussian space, then Nataf’s model is not used,
and r0ij ¼ CX ij

	
cicj; where CX ij

is an element of the covariance matrix (which can be obtained
with the mean values mi and mj).
The computational procedure for the reliability analysis of structures using FORM can be

summarized in the following steps [21]:
(1)
 Set k (iteration counter) ¼ 0.

(2)
 Perform the finite element analysis of the structural system. To start the iterative process the

initial value Z0 ¼ 0 is adopted, which corresponds to a vector X0 containing the mean values
of the variables in the real space. The limit state function g(Xk) is obtained.
(3)
 Compute the limit state function G(Zk) in the non-correlated standard Gaussian space, which
is given by G Zkð Þ ¼ G S Xkð Þ½ � ¼ g Xkð Þ:
(4)
 Compute the gradient rG(Xk).

(5)
 Set k (iteration counter) ¼ k+1. Using the method of Hasofer–Lind (H–L method) and the

method of Rackwicz–Fiessler (see Ref. [7]), compute

Zkþ1 ¼ Zk þ sdk, (20)

where s is a parameter defining the step length and dk is a direction-searching vector calculated
with the following expression:

dk ¼
1

rG Zkð Þ


 

 ZT

k � rG Zkð Þ � G Zkð Þ
� �

rG Zkð Þ � Zk. (21)
(6)
 Calculate

m Zkð Þ ¼
1

2
Zk �

rG Zkð Þ
T
� Zk

rG Zkð Þ


 

2 rG Zkð Þ













2

þ
1

2
ĉ G Zkð Þ

2
� �

X0, (22)

where ĉ is a positive constant (usually ĉ ¼ 0:1). The function m(Zk) must decrease in each
iteration, such that a global minimum value is obtained when Zk ¼ Z� (Z* is the design
point). Different values of s (step length) are used, computing dk with Eq. (21), Zk+1 with
Eq. (20) and m(Zk) with Eq. (22). When m(Zk+1)om(Zk) is satisfied, the value of s is found.
 

(7)
 Compute the reliability index b ¼ Zkþ1

 
 and the failure probability Pf ¼ Fð�bÞ, where F( � )

is the standard Gaussian cumulative probability function.

(8)
 Compute Z0kþ1, the vector of variables, in the correlated Gaussian space and Xk+1 in the real

space using

Z0kþ1 ¼ LZk and Xkþ1 ¼ F�1X F Z0kþ1
� �� �

¼ F�1X F LZkþ1ð Þ½ � ¼ T Zkþ1ð Þ. (23)
(9)
 Check the convergence of Zk+1 and check if G(Zk+1)ffi0. If convergence is not satisfied, go
back to step (2), else stop the iterative process, and set Z*

¼ Zk+1. Sensitivity of b may be
optionally calculated in the real space.



ARTICLE IN PRESS
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4.3. Monte Carlo simulation with importance sampling

Basically, the Monte Carlo method consists in the simulation of a large number of experiments
generated in an artificial form. These experiments are samples of the random variables X, and
after their generation the limit state function g(X) is evaluated. Then, this method may be
understood as the relative frequency of the failure cases (when g(X)o0) observed in the different
samples.
The computational procedure for the reliability analysis using the Monte Carlo method can be

summarized in the following steps:
(1)
 initiate a loop for k ¼ 1 until ns (number of simulations);

(2)
 generate random numbers contained in vector u, uniformly distributed between 0 and 1;

(3)
 generate the vector of variables Zk ¼ F�1ðukÞ in the non-correlated standard Gaussian space,

where F( � ) is the standard Gaussian cumulative probability function;

(4)
 calculate Z0k in the correlated standard Gaussian space and Xk in the real space with Eq. (23).

If Xk is in the correlated standard Gaussian space, Xk ¼ Z0k;

(5)
 perform the structural analysis and determine the limit state function g(Xk);

(6)
 calculate:

I g Xkð Þ½ � ¼
1 if g Xkð Þp0! failure;

0 if g Xkð Þ40! safety;

(
(24)
(7)
 calculate the partial value of the failure probability Pf k
¼ Pf k�1 þ ð1=nsÞI g Xkð Þ½ �:

End of the loop. When k ¼ ns, the failure probability is determined with the following
expression:

Pf ¼

Z
½xjgðXÞp0�

f xðXÞdX ¼

Z
X

I gðXÞ½ �f xðXÞdX ¼
1

ns

Xns
k¼1

I gðXkÞ½ � ¼ mPf
; (25)
(8)
 calculate the standard deviation cPf
and the variation coefficient dPf

with

cPf
ffi

1� Pf

� �
Pf

ns

� �1=2
and dPf

¼
cPf

mPf

ffi
1� Pf

� �
nsPf

� �1=2
(26)
(9)
 if dPf
has no satisfactory value, then repeat steps (1)–(7), else determine the reliability index

with b ¼ F�1ðPf Þ.
In order to avoid an excessive number of simulations, it is convenient to use the Monte Carlo
method with importance sampling. The basic idea of this technique consists in the concentration
of the sample points in a region where they contribute more strongly to the failure probability.
Then, sample points may be located near the design point.
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When the importance sampling technique is used, the failure probability is calculated with the
following expression, similar to Eq. (25):

Pf ¼

Z
X

IW g Xð Þ½ �f W Xð ÞdX ¼
1

ns

Xns
1

IW g Xkð Þ½ �, (27)

where fW(X) is the sampling probability function and

IW g Xð Þ½ � ¼ I g Xð Þ½ � �
f X Xð Þ

f W Xð Þ
. (28)

Some important characteristics of a good function fW(X) are as follows:
�
 fW(X) may be similar to fX(X), but with its mean value moved in the direction of the failure
domain;

�
 fW(X) may be similar to fX(X), but with an incremented standard deviation.

Function fW(X) may be adapted during the process modifying the value of the standard
deviation.

4.4. Structural reliability applied to analysis and design of vehicles structures

The limit state function (LSF) adopted in this work to carry out the reliability analysis is given
by the following expression:

LSF ¼ LT� LTdesign, (29)

where LTdesign is a constant representing the lifetime established for the structural design and LT
is the lifetime, which is a function of random variables characterizing the material behavior
subjected to fatigue.
The lifetime is obtained with the expression

LT ¼
T

D
yD, (30)

where T is the total time spent by each sample, D is the corresponding damage calculated with Eq.
(15), D is given by Eq. (13) and y is a random variable which is associated with the variation in the
term smð Þi in Eq. (15), and defined in order to consider the variability of the lifetime estimation, as
suggested by Wirsching [5].
It was mentioned previously that D may vary between 0.3 and 3.0 when fatigue failure occurs,

and this value depends on factors with random characteristics [15]. For this reason D was taken as
a random variable with a lognormal probability distribution function. The parameter K, in Eq.
(17), was also taken as a random variable with lognormal probability distribution function.
The lognormal format was proposed by Wirsching [5] and Wirsching and Chen [22] as a

convenient method to obtain a closed expression to evaluate the reliability index b. This is
particularly useful when b is a constraint function of the weight optimization process, where the
generation of design points with high values of lifetime may create numerical problems when
FORM is employed.
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When the failure probability is calculated using Monte Carlo simulation, Eq. (29) is used
directly, but when FORM is employed, the limit state function may be written as follows:

g D;Kð Þ ¼ ln LT� ln LTdesign. (31)

Applying Eqs. (13), (15) and (30), Eq. (31) is given by:

g D;Kð Þ ¼ ln Dþ ln K þ ln yþ ln LTþ ln 2� ln
X

i

sm
vm

� �
i

" #
� ln LTdesign. (32)

As D and K have a lognormal probability distribution, ln D and ln K have a normal probability
distribution. Applying FORM and using Eq. (32) as the limit state function, the following
expression of the reliability index b is obtained:

b ¼
mln LT � ln LTdesign

cln LT

, (33)

where mln LT and cln LT are the mean value and the standard deviation of lnLT, respectively. This
last value is given by

cln LT ¼ ln 1þ C2
k

� �
1þ C2

D

� �
1þ C2

y

� �� �
 �1=2
, (34)

where Ck, CD and Cy are the variation coefficients of the real variables K, D and y, respectively.
5. The optimization procedure

In this work Farkas’ method [14] for structural problems with discrete variables was adopted.
In this method, design variables are discrete and the objective function is monotone in terms of
these design variables.
The minimization problem is given by

Minimize f Xð Þ

subject to hi Xð Þp0; i ¼ 1; . . . ;m,

with xj 2 xj1;xj2; . . . ; xjq

� �
; j ¼ 1; . . . ; n, ð35Þ

where n is the number of variables, m is the number of constraints and q is the number of levels of
each variable arranged in an ascending order. Levels may be represented, for example, by values
of the cross section.
The basic steps are as follows:
(1)
 The solution starts with all variables set at the highest level. The corresponding function value
fmin is an upper bound of f(X) and X is stored in Xmin.
(2)
 The variable levels are lowered one at a time successively, until xn�1. Let us consider, for
example, the first variable x1. Constraints are evaluated at level l1 ¼ q and level l2 ¼ 1. If
feasibility is satisfied at the lowest level l2, then the variable is set at that level and proceeds to
the second variable. If level l1 is feasible and level l2 is not feasible, a new trial is set at the
bisection point l ¼ integerðl1 þ l2=2Þ. If l is feasible, then l1 is set equal to l, and set equal to l2
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otherwise. This process is continued until l1 � l2 ¼ 1 and l1 is the feasible level for x1. The
same scheme is used for x2; . . . ; xn�2;xn�1. The process to determine the successively lowest
level is called fathoming.
(3)
 The value of xn is calculated determining the zero of the function f ðxnÞ � f min ¼ 0.
The following situations may occur
� If xn is larger than the highest value xnq

(which is a feasible value), then the variable is
decreased one step at a time until the lowest feasible level is identified. If f ðxnÞof min (the
previous bound of the objective function), then fmin and Xmin are updated. Fathoming has
been completed, and the next step is initiated.
� If xn is lower than the smallest value xn1 ; then the objective function value cannot be
improved for this choice of levels. Fathoming has been completed, and the next step is
initiated.
� If xn lies between xn1 and xnq

; then constraints are evaluated at the next higher level and, if
feasible, we go on to calculate at the next lower value. If this does not occur, the fathoming
operation is stopped.
(4) A backtracking process is executed by increasing the previous variable xn�1 to the next higher
level, and the next operation is the last variable check as described earlier in step (3). Whenever

the level of another variable, xn�2 or below, is raised, the fathoming process, involving the
bisection steps for variables up to n�1, is applied and then the last variable calculation is
repeated as in step (3).
In this work, the aim is to minimize the structural weight. Consequently, the objective function
is the total material volume, which is given by

f Að Þ ¼
Xnb
i¼1

Aili, (36)

where nb is the number of bars, and Ai and li are their respective cross sections and lengths.
The constraints are referred to possible failure modes such as limit yield for stress, overall

buckling of bars, local buckling in thin-walled structural members and a reliability index for the
probabilistic fatigue analysis.
To verify yielding failure, values of stress peaks must be considered. Using completely

reverse equivalent stresses may lead to wrong conclusions. The corresponding constraint
is given by

h1 Xð Þ ¼ s� syo0, (37)

where sy is the yield stress and s is a peak value of the stress.
The constraint function referred to the overall buckling of bars is given by

h2 Xð Þ ¼ Nxx �
p2EI

l2e
o0, (38)

where I is the smallest moment of inertia of the cross section, E is the Young’s modulus, le is the
equivalent length and Nxx is the axial compressive load acting on the bar.
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The constraint functions, considering local buckling on thin-walled box beams with rectangular
cross section, are given by the following expressions (see Ref. [23]):

h3ðXÞ ¼ sy

	
K1Eðt=dÞ2
� �

� 1p0 and h4 Xð Þ ¼ sy

.
K2E t=b

� �2h i
� 1p0, (39)

where t is the wall thickness, b and d are the width and height of the cross section and K1 and K2

are two dimensionless coefficients (values suggested by Iyengar and Gupta [23] for these
coefficients are K1 ¼ 21:72 and K2 ¼ 3:62).
The constraint, when the probabilistic fatigue analysis has a fixed reliability index, may be

written as

h5 Xð Þ ¼ 1� b=bfixed
� �

p0, (40)

where bfixed is the prescribed reliability index and b is the reliability index obtained with MCSIAS
or FORM.
If the reliability analysis is carried out with FORM, using the limit state function given by

Eq. (32), then an analytical expression for the reliability index b is obtained, which is given by
Eq. (33). K and D are taken as random variables with lognormal probability distribution. In this
case, for the optimization process, where a fixed value of b is adopted, the corresponding
constraint may be obtained from Eqs. (33) and (40) as

h5 Xð Þ ¼ 1�
mln LT

ln LTdesign � bfixedcln LT

p0. (41)

The value of mln LT is evaluated from the structural analysis for a specified number of samples.
The fatigue curve is built with the mean value of K, and the total damage D, when fatigue failure
occurs, is taken equal to 1.0 (which is a value commonly used).
6. A short description of the main program

The main program, taking into account the different subjects described in the previous sections,
may be summarized as follows:
1.
 Define the problem characteristics.

2.
 If the optimization procedure will not be used, then calculate the reliability index with the

FORM or MCSIAS described in Sections 4.2 and 4.3, respectively. The limit state function,
LSF or g(X), is given in Section 4.4, and the lifetime (LT) is evaluated carrying out the random
dynamic fatigue analysis presented in Section 3.4.
3.
 If the optimization procedure will be used, then the method described in Section 5 is employed
and the objective function to be minimized is the structural weight. As the constraints are
independent of the random dynamic fatigue analysis and, optionally, from the reliability index,
an iterative process (including subroutines performing the structural analysis and determining
the reliability index) is necessary. When convergence is obtained, data with optimized
dimensions are stored and step 2 is applied.
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7. Numerical application
7.1. Model description

Algorithms presented in the previous sections are now applied to a hypothetical commercial vehicle,
which is formed only by spatial frame elements. Welded joints, where several local effects may be
considered, as well as constrained warping could be studied with more details using shell elements.
However, in this case, it is necessary to analyze a very complex model, where the number of unknowns
increases significantly with respect to a structure formed exclusively by frame elements.
The chassis is composed of two straight longitudinal beams and six straight transversal beams

(with C-shaped cross sections), as indicated in Fig. 4, where the main dimensions are included.
The whole body is depicted in Fig. 5, while a side view, with the main dimensions of the body, is

presented in Fig. 6. The set of bars forming the floor and linking the body to the chassis is shown
in Fig. 7. The total number of bars and nodes are 254 and 461, respectively.
It is considered that the spatial frame elements are steel bars (ASTM A36) with the following

characteristics: sy (yield stress) ¼ 250MPa, sr (ultimate stress) ¼ 450MPa, E (Young’s
modulus) ¼ 2.06� 105MPa, G (shear modulus) ¼ 7.92� 104MPa, n (Poisson’s ratio) ¼ 0.3 and
g (specific weight) ¼ 77 kN/m3.
The complete bus weighs 79 kN, but if passengers and baggage are included, the total weight

increases to 123 kN, where 30.9 kN corresponds to the chassis and other fixed mechanical
components. The weight of both axes (18.1 kN) have not been considered.
Pneumatic stiffness and damping are not considered, and the prescribed displacements induced

by the road surface are directly applied to each axis. It is assumed that the mass of each axis does
not generate inertial forces and that they do not have any influence. It is considered that the
contact between each tire and the road is represented by a single point.
The suspension model is constituted by linear springs with stiffness coefficients equal to 300 kN/

m. The shock absorbers are modeled as viscous damping mechanisms with a constant equal to
24.5 kN s/m corresponding to a damping ratio x ¼ 0:4, which is a value commonly used in
commercial vehicles [24].

7.2. Initial tests

The body was initially modeled using tubular bars with rectangular hollow cross sections
characterized by the following dimensions: width ¼ 0.04m, height ¼ 0.04m and
320
1530 1530 1530 3030 1530 765

25
00

93
0

(mm)

C 210x80x8 C 140x80x8

C 210x80x8

Fig. 4. Schematic representation of the chassis and its main dimensions (in mm).
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Fig. 5. Schematic representation of the body.

Fig. 6. Side view of the body with its main dimensions (in mm).

Fig. 7. Set of bars linking the body and the chassis.
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thickness ¼ 0.003m. With this configuration, the weight of the frame structure corresponding to
the body was 12.4 kN (here, weights of passengers, baggage, seats, water closet, etc., were not
included).
The static analysis of the structure was carried out considering that the maximum load was acting

on the vehicle, and the safety coefficients obtained for different bars were greater or equal to 4.0.
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This structural configuration was also studied performing a random dynamic analysis,
considering the vehicle velocity as equal to 25m/s and with the pavement surface
having a roughness coefficient c ¼ 40� 10�8, which is a common value used in secondary
roads. The response stabilization in the adopted sample occurred in 2 s, and after this
time, 8 s were used to carry out the dynamic analysis. A correlation coefficient of the
parallel trails equal to 0.5 was assumed. The fatigue curve defined by EUROCODE 3 [18],
extended for 2� 108 cycles, and Shigley’s method for multiaxial stress combination
was adopted. The fatigue limit corresponding to 106 load cycles, for bars belonging
to the body and the chassis were fixed in 154MPa (the correction factors applied are
Ka ¼ 0:89, Kb ¼ 0:88 and Kweld ¼ 0:875) and 137MPa (the correction factors applied are
Ka ¼ 0:89, Kb ¼ 0:78 and Kweld ¼ 0:875), respectively. Using standard curve ‘‘stress level vs.
number of cycles’’ given by the EUROCODE 3 [18], the corresponding coefficients and cut-off
limits are as follows:
�
 For the body:

m ¼ 7:144; a ¼ 21:63; K ¼ 10a ¼ 4:24� 1021; 103pNo5� 106,

m ¼ 9:144; a ¼ 25:81; K ¼ 10a ¼ 6:46� 1025; 5� 106pNo2� 108,

cut-off limit ¼ 82:2MPa.
�
 For the chassis:

m ¼ 6:37; a ¼ 19:12; K ¼ 10a ¼ 4:14� 1019; 103pNo5� 106,

m ¼ 8:37; a ¼ 23:67; K ¼ 10a ¼ 4:68� 1023; 5� 106pNo2� 108,

cut-off limit ¼ 68:5MPa.
For the random variables, the variation coefficients adopted here were CK ¼ 0:08 and CD ¼ 0:5
(which is a very high value). In the lifetime estimation 10 samples were used and the coefficient Cy

was automatically calculated.
For this initial configuration a lifetime LT ¼ 2:08� 108 s was obtained. Considering

a design lifetime (which is the minimum value attributed to a desired lifetime)
LTdesign ¼ 1:3� 108 s corresponding to a vehicle used during 10 years and working 10 h per
day, the computed reliability index was b ¼ 0:43, which is a very low value. The corres-
ponding failure probability was 33.2 percent. Considering the same data applied to the
previous case, but prescribing CD ¼ 0, the corresponding computed reliability index
was b ¼ 0:7 (which is still a low value). Now considering the same data applied
in the first case, but with the standard fatigue curve defined by EUROCODE 3 [18]
and again using CD ¼ 0, the corresponding computed reliability index was b ¼ 1:17
(which corresponds to a failure probability equal to 11.5 percent). Observe that, for these three
cases, the optimization procedure was not used and only one work condition for the vehicle was
considered.
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7.3. Optimization of the structural weight

To optimize the structural weight, bars were divided into three groups, based on constructive
criteria. Each group may assume values of the cross sections that are available in Table 1.
The following conditions were established:
(a)
Tab

Dim

Cro

1

2

3

4

5

6

7

8

9

10

11

12
Elements belonging to group 1 are located at the floor of the vehicle, linking the body to the
chassis. Numbers 2–9, indicated in Table 1, may identify the cross sections of these elements.
(b)
 Elements belonging to group 2 are located at the sides of the vehicle. Numbers 1–7 may
identify the cross sections of these elements, indicated in Table 1.
(c)
 Elements belonging to group 3 are located at the roof of the vehicle. Numbers 1–7, indicated
in Table 1, may identify the cross sections of these elements.
In order to apply the model to a more real situation, several work conditions for the vehicle,
involving combinations of different kinds of pavement surfaces and different vehicle velocities,
were established. These work conditions are shown in Table 2. The design lifetime LTdesign was
fixed in 3600 days, using the vehicle 10 h/day. For each simulation, 10 samples were used. A
minimum value of the reliability index was fixed, and this value was taken as a constraint in the
optimization procedure. The minimum value of the reliability index was bfixed ¼ 3:0.
The following results were obtained:
(a)
 Cross sections:
elements belonging to group 1: cross-section number 7;
elements belonging to group 2: cross-section number 4;
elements belonging to group 3: cross-section number 2.
(b)
 Minimum value of the weight of the body structure: 14.4 kN (an increase of 2 kN with respect
to the initial value). This value is related to two factors: (a) some severe work conditions were
considered in Table 2 and (b) the value bfixed ¼ 3:0, which was adopted as a constraint in the
le 1

ensions (in mm) of the available cross sections used as design variables

ss section Width Height Thickness

40 40 1.20

40 40 1.90

40 40 2.25

40 40 3.00

40 60 1.90

40 60 2.25

40 60 2.65

60 60 2.25

60 60 3.00

60 60 3.35

60 80 3.00

60 80 3.35
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Table 2

Combination of different pavement surfaces and vehicle velocities

Road Roughness coefficient c,

Ref. [1]

Vehicle velocity (m/s) Percentage for each work

conditions (%)

Very good highway 15� 10�8 30.00 30

Average major road 30� 10�8 25.00 50

Average minor road 60� 10�8 15.00 15

Poor minor road 120� 10�8 11.11 5
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optimization procedure, is really a very high value; this last aspect is more evident taking into
account that CD ¼ 0:5 was taken, and this high value (suggestions of different authors vary
from CD ¼ 0:0 until CD ¼ 0:3) influenced b, leading to lower values of the reliability index.
(c)
 Lifetime: 45,004 days, 10 h/day.

(d)
 Reliability index: b ¼ 3:15 using FORM and b ¼ 3:18 using MCSIAS.

(e)
 Computer process time: 36 h 13min using a Pentium IV 3.2GHz with 1GB RAM DDR400,

after 27 iterations in the optimization process. The code was written in fortran90.
7.4. Influence of the number of samples to estimate the lifetime

It is necessary to highlight that for the lifetime estimation, variability associated with several
factors was found. If an ergodic process is considered, the lifetime estimation is obtained from
data corresponding only to one sample. However, each sample has its own number of cycles and
stress levels resulting from the cycle counting process. In each stress cycle, Eq. (11) or (13) is
applied, where the coefficient m may take different values, such as those given previously in this
example, depending on the part of the fatigue curve that is considered. Consequently, a significant
variability to estimate the lifetime is verified. For example, the frame structure obtained from the
optimization procedure described in the previous section was considered. Table 3 shows the
lifetime (in days) and the reliability index b, calculated with Cy ¼ 0 and 0.75, corresponding to ten
samples. Values of the reliability index were computed using Eqs. (33) and (34). The mean value
and the standard deviation of the lifetime and the mean value of the reliability index were also
included in the same table (this last value is not a mean of values contained in the reliability index
column of Table 3, it was calculated using the mean value and the standard deviation of the
lifetime in Eq. (33)). The value of the coefficient Cy ¼ cln LT=mln LT ¼ 0:75 is very high (although a
value of Cy equal to 0.45 was reported by Wirsching [5]). It is expected that taking more than ten
samples, the value of Cy will be less than 0.75.

7.5. Some important remarks

In this example, 200 harmonic components were used to simulate in the time domain the road
roughness and the corresponding prescribed displacement. This number of harmonic components
was necessary to represent, with a very small error (less than 1 percent), the area of the spectral
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Table 3

Lifetime estimation (in days) for 10 samples considering a vehicle working 10 h/day

Sample Lifetime (days) Reliability index (b)
Cy ¼ 0:00

Reliability index (b)a

Cy ¼ 0:75

1 68,654 6.49 3.63

2 22,123 4.00 2.22

3 88,889 7.06 3.95

4 16,089 3.31 1.85

5 11,901 2.63 1.47

6 19,663 3.74 2.09

7 87,204 7.02 3.92

8 88,889 7.06 3.95

9 14,752 3.36 1.88

10 31,882 4.79 2.68

Mean 45,004 5.61 3.18

Standard deviation 33,955

aValues of b were obtained considering the variation coefficient Cy, obtained from the ten samples, dividing the

standard deviation of the lifetime by the mean value.
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density function and the whole process in terms of its statistics (mean value and standard
deviation).
Factors such as the time when the structural response is stabilized and the time interval adopted

in a specific sample to estimate the lifetime have not shown relevant influences.
8. Final remarks

A time domain approach to deal with fatigue effects due to pavement roughness on commercial
vehicle structures was presented in this work. A versatile computational code was formulated to
estimate the vehicle lifetime and to determine, alternatively, the respective reliability index.
Structural weight optimization for a specified vehicle lifetime with a prescribed reliability index
was also included.
In order to get a good computational performance, it would be necessary to consider an ergodic

process, where a unique sample is representative of the complete process. However, preliminary
tests have shown significant variations in the lifetime among the different samples, due to the
sensibility associated with fatigue analysis and due to the cycles counting process with the rainflow
method. Therefore, it seems necessary to work with many samples sacrificing the computational
performance.
Looking for a good approximation of the results with respect to the real situation, a correct

representation of the different pavement characteristics and vehicle velocity levels (including the
time spent by each of these velocity levels) is necessary. Determination of the vehicle lifetime, the
reliability index and the optimal weight is strongly dependent on specifications with respect to
the form of the vehicle that has been used.
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In fatigue problems, where a high variability of parameters and results may be found, reliability
analysis has a very important role to play. In the computational code, based on the algorithms
described previously, the reliability index may be determined using MCSIAS or, alternatively,
FORM. However, the most important aspect is the definition of the random variables and their
respective distribution probability function. A closed solution for the reliability index, using
FORM, was used in this work, improving the computational performance.
Farkas’ algorithm, used to optimize the structural weight, has shown to be a very robust

method, but too many iterations were necessary to obtain the desired convergence.
The fact that the reliability index may be used as a constraint in the optimization process

emphasizes the importance of the computational code as an auxiliary tool for vehicle structural
analysis and design.
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M.L. Boéssio et al. / Journal of Sound and Vibration 291 (2006) 169–191 191
[20] P.L. Liu, A. Der Kiureghian, Multivariate distribution models with prescribed marginal covariance, Probabilistic

Engineering Mechanics 1 (2) (1986) 105–112.

[21] H.M. Gomes, A.M. Awruch, Reliability of reinforced concrete structures using stochastic finite elements,

Engineering Computations 19 (7) (2002) 764–786.

[22] P.M. Wirsching, Y.N. Chen, Consideration of probability based fatigue design criteria for marine structures,

Marine Structures 1 (1988) 23–45.

[23] N.G.R. Iyengar, S.K. Gupta, Programming Methods In Structural Design, Edward Arnold, London, 1980.

[24] T.D. Gillespie, Fundamentals of Vehicle Dynamics, SAE, Warrendale, 1992.


	Fatigue lifetime estimation of commercial vehicles
	Introduction
	Formulation of the structural dynamic problem
	The dynamic equilibrium equation
	Description of the rough pavement surfaces and determination of the prescribed displacement samples

	Multiaxial random fatigue
	State of stress
	Cumulative damage and lifetime estimate
	Criteria for a multiaxial state stress
	Computational procedure for the dynamic and fatigue analysis

	Structural reliability analysis
	The failure probability
	FORM
	Monte Carlo simulation with importance sampling
	Structural reliability applied to analysis and design of vehicles structures

	The optimization procedure
	A short description of the main program
	Numerical application
	Model description
	Initial tests
	Optimization of the structural weight
	Influence of the number of samples to estimate the lifetime
	Some important remarks

	Final remarks
	Acknowledgments
	References


